CCOS TC Kickoff Meeting Cluster Analysis for CCOS Domain

Ahmet Palazoglu (P.I.)
Scott Beaver
Swathi Pakalapati

University of California, Davis

Department of Chemical Engineering & Materials Science

June 20, 2006

Overview

- Introduction to Cluster Analysis
 - 2 Types of Cluster Analysis for Air Quality Applications
 - Daily maximum 8-hr [O₃]
 - Hourly ground-level wind field
- Cluster Analysis for CCOS Domain Project
 - Project Work Plan
 - Recent Progress
 - Information needed from CCOS and Districts

What is Cluster Analysis?

- *Unsupervised* statistical methods to determine recurring patterns from a set of observations.
 - Require no advanced knowledge of how patterns manifest themselves in data.
- Important
 - Representative input data
 - Spatial field of single parameter— O₃ & wind fields
 - Monitoring station network must represent physical domain
 - Station selection require aid from district staff
 - Appropriate statistical model
 - Different models identify different patterns/physical processes
 - Poor model choice might be misleading

2 Cluster Analyses for Air Quality

- General cluster analysis framework
 - Performed for set of days spanning a number of years
 - Consider simultaneous, spatially distributed measurements
 - Days are labeled forming clusters of similar days
- 2 models for specific air quality parameters
 - Daily maximum 8-hr [O₃]
 - Applied to a disjoint set of days experiencing high ozone levels (e.g. exceedance days for 1996-03)
 - Reveal recurring mechanisms resulting in exceedances
 - Hourly ground-level wind field (speed and direction)
 - Applied to continuous measurements for entire ozone season (e.g. each day from 1 June to 30 September, 1996-03)
 - Finds surrogate meteorological patterns and associated ozone response

Cluster Analysis for CCOS Domain

- Independent cluster analyses for 6 basins
 - Bay Area (BA)
 - Sacramento Valley (SV)
 - San Joaquin Valley (SJV)— North, Central, South
 - Mountain Counties (MC)
- Study Period
 - Ozone season only (1 June − 30 September)
 - Core period 1996—2004
 - 2 historical years before 1996
 - 1985 & 1990 ?
 - Should consider El Nino effect so results reflect emissions reductions?

Recent year 2005

Work Plan

- Phase I / Year I
 - MATLAB Toolbox for computations and visualization
 - Completed for Phase I
 - Wind field clustering for 6 basins
 - Completed for BA years 1996—2003
 - Require data for other basins/years
 - 8-hr [O₃] clustering for 6 basins
 - Expanding on previous study for BA
 - Require data for other basins
- Phase II / Year II
 - Synoptic scale dynamics and inter-annual trends
 - Synopsis of CCOS domain air quality meteorology to determine weather patterns affecting multiple basins

Recent Progress

- Database received for 1980–2004
 - Must select air quality and met. stations for each basin
- Develop MATLAB Toolbox
 - Computation & Visualization for Phase I complete
 - BA analysis as template for other air basins
- Revising BA Analysis
 - "Correlation" vs. "Euclidean" metrics for O₃ clustering
 - "Lowering of standard" for BA O₃ clustering

Correlation vs. Euclidean Metrics

- Original BA O₃ clustering
 - k-means clustering with Euclidean metric
 - severity of regional ozone levels
- Revised BA O₃ clustering
 - k-means clustering with Correlation metric
 - spatial variation of episode locations
 - Metric provides alternative perspective
 - Can identify previously undetected mechanisms?

Lowering of Standard

- Original BA O₃ clustering
 - 8-hr NAAQS exceedance days
 - Daily max. $[O_3] > 84$ ppb at any station
 - Only 63 episode days in 8 years
- Revised BA O₃ clustering
 - Include more days to gain broader perspective
 - Daily max. $[O_3] > 70$ ppb at any BA station
 - Different threshold for each air basin
 - Include all 1-hr and 8-hr exceedance days?
 - Have data for 18/22 BA stations from previous analysis
 - Multiple monitors in database for 4 unknown, urban sites
 - San Francisco, Oakland, San Jose, San Jose E.
 - Population exposure vs. maximum concentration?

Information Needed

- BAAQMD
 - AIRS codes for remaining 4/22 air quality stations
- Other Districts
 - Confirm air quality station network
 - Begin selection for met network
- CCOS
 - Coordinate efforts from districts
 - Obtain new data for 2005
 - Select pre-1996 benchmark years (1985 & 1990 ???)

Summary and Immediate Work

- Completed
 - MATLAB Toolbox for Phase I
 - Most of BA analysis
- In Progress
 - Refinement of O₃ clustering algorithm
 - Testing on BA data set
 - Obtaining data for other basins (SJV, SV, MC)
 - MATLAB Toolbox for Phase II
- Information needed
 - Historical years to include in study period
 - Confirm air quality networks for cluster analysis
 - Select meteorological monitoring network with representative wind data for desired study period

Links to Published Studies

- Daily maximum 8-hr [O₃] clustering
 - Beaver, S. and Palazoglu, A., 2006: A cluster aggregation scheme for ozone episode selection in the San Francisco,
 CA Bay Area. *Atmos. Environ.*, 40, 713—725.
- Continuous, hourly ground-level wind field clustering
 - Beaver, S. and Palazoglu, A., 2006: Cluster analysis of hourly wind measurements to reveal synoptic regimes affecting air quality. In press *J. Applied Meteor*.

